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A new finite-size scaling approach to random walks 

Achille Giacomettit and Hisao Nakanishi 
Lkpanment of Physics, Purdue University, West Lafayene, IN 47907, USA 

Received 10 August 1993, in final form 24 January 1994 

Abstract. We present a new finite-si2e scaling method for the random walks (nw) superseding a 
previously widely used renormalization group approach, which is shown here to be inconsistent, 
The melhcd is valid in any dimension and is based on the exact solution for the twwpoint 
correlation function and on finite-size scaling. As M example, the phase diagram is derived for 
the random walk in two dimensions with a surfacebulk interaction where the system has either 
a surface or a defect line. We also discuss an initial calculation of the corresponding phase 
diagram for the case of a critically diluted lattice. 

1. Introduction 

The renormalization group (RG) has been a cornerstone in the analytical evaluation of the 
critical exponents of various statistical models in the past two decades [l-31. Its application 
to self-avoiding walks (SAW) was a natural consequence of the formulation of SAW in the 
n + 0 limit of the n-vector model whose two-point correlation function yields, in this limit, 
the generating function of the random walk with the excluded volume effect [4]. 

Ordinary random walks without the excluded volume effect are generally straightforward 
to characterize quantitatively; however, no exact solution exists when they are confined to 
disordered space, even in the absence of self-avoidance. This prompted searching for 
the extension of the RG approach to the random walks with no self-avoidance. Some RG 
approaches were constructed for the random walk in the presence of a quenched distribution 
of waiting times ( [5]  and references therein), which is a framework somewhat different from 
the one treated here. The best kinds of RG for including disorder appeared to be variants 
of real-space cell renormalization. For example, Family and Gould (FG) 161 studied a cell 
RG in the absence of disorder, while Sahimi and Jerauld (SI) [7] and Gould and Kohin 
(GK) [SI worked on the disordered case, where the disorder was mimicked by a site (or 
bond) percolation cluster. The results in the latter cases were found to be in very good 
agreement with those of numerical simulations [9] of random walks on a percolating cluster 
on the square lattice. However, unlike GK who used the kinetic rule for the random walk 
(more precisely they solved the model which is nicknamed myopic ant) [lo], SJ used the 
static recipe which is now recognized to correspond to the so-called ideal chain model [ 111. 
Recent analysis [ 11-15] with various different approaches have shown that the ideal chain 
in a non-homogeneous environment does not belong to the same universality class as the 
kinetic walks; rather it is equivalent to the random walk in a trapping environment [ l l ,  141. 

By calculating exactly the two-point correlation functions for a random walk in a square 
cell of various sizes using the so-called corner rule [41, we will show that the general 
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procedure introduced by FG needs a fundamental revision. This is also supported by exact 
analytical calculations on the one-dimensional analogue where an arbitrary cell size can be 
used. We will then proceed to show how one can obtain a consistent procedure based on 
the finite-size scaling hypothesis [16], which can then be applied to a variety of problems 
including the cases where the available space is disordered. 

The outline of this paper is as follows. In section 2 we first recall the basis of the 
real-space renormalization group approach and discuss its fundamental problems. In this 
section, we also give the exact analysis of the one-dimensional versions of this problem, 
which helps to expose the inconsistencies of the renormalization approaches. In section 3, 
we introduce our new method which is based entirely on the widely accepted finite-size 
scaling approach and demonstrate it by calculating the phase diagram for a problem with 
different fugacities for the s u ~ a c e  and bulk. We also describe the results of our initial 
calculations for the case where the space available to the random walk is critically diluted. 
A brief summary is given in section 4. 

A Giacometti and H Nakanishi 

2. Difficulties with real-space renormalization procedures 

It is well known that the unconstrained random walk on a lattice can be solved by using 
a generating function technique pioneered by Montroll I18-201. Let Pz0JN) be the 
probability for the walker to be at the position x E Zd at the (discrete) time N ,  given 
that it started at the site 30 at the initial time 0. The master equation to be solved is then 

where the notation y(z) means that the sum is restricted to the nearest neighbours of z. The 
number C,,,(N) = zNP,,,,(N) of N-step walks with end-points xo and x then satisfies 
the analogous equation 

In order to solve the master equation, it proves convenient to introduce the generating 
function Gzo,S(k), 

where w is a walk having IO and x as the end-points, and 1w1 is the number of steps 
associated with it. 

By multiplying (2.2) by kN+' and summing over all N ,  one gets, taking into account 
the initial condition C,,,(O) = cT,,,~, 

G,&) = k Gz,,u(k) + &. (2.4) 
U(=) 

It is easy to see that Gz&) is also the two-point correlation function of a scalar free-field 
theory and that (2.3) can be recovered from a von Neumann expansion (see e.g. r14.201). 

Generally the procedure for a RG includes two basic steps: first one coarse grains 
microscopic details in real space or integrates over the fast modes in momentum space. 
This is followed by a rescaling of the spacdmomentum and of the model variables while 
conserving the partition function and recasting the Hamiltonian in the same functional form 
as before. 
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In the case of the random walk, the requirement of the conservation of the partition 
function amounts to a mapping between the rescaled and original fugacities which can be 
formally expressed as 

where k‘ and w’ are the fugacity and walk on the rescaled lattice, respectively, P stands 
for the partition function, and the sum is constrained to all w consistent with w’. In the 
case of self-avoiding walks, this procedure leads to a well known polynomial recursion 
relation between k‘ and k whose linearization around the fixed point leads to the value of 
the correlation length exponent U. On the other hand, once the self-avoidance is turned off, 
the polynomial recursion becomes an infinite series since there are an infinite number of 
walks even in the smallest possible cell. One is thus faced with the problem of finding 
either a way of summing over an infinite number of walks or a truncation procedure. Some 
time ago Family and Gould [6] devised a recipe along the latter line. Their idea was that if 
L = ba (a being the lattice constant) is the size of the system, then walks with a number 
of steps N larger than N M ~  given by 

NMAX [(Ri)IMIAX L2 (2.6) 

will give a negligible conhibution to the sum in (2.5). As an example, if we renormalize 
from L = 2a to L’ = a,  then we have 

k’ = kz + 2k3 +5k4 + 14.t’. (2.7) 

On the other hand the total number of N-step walks having q. z as the end-points 
can be calculated easily from (2.4) which gives the quantity (2.3) exactly. Therefore both 
sides of (2.5) can be calculated exactly without any truncation procedure. In figure 1 
we compare the generating function calculated exactly with that calculated using the FG 
truncation procedure, which can clearly be recovered on numerical Taylor expansion of 
the exact result up to the desired order. It is apparent that, although in general the FG 
truncation procedure seems to reproduce rather well the trend of the fixed point k’, it fails 
to reproduce the singularity present in the generating functions. This singularity moves 
closer and closer to the fixed point as the cell size increases. The physical origin of this 
singularity stems from the fact that, unlike other systems where criticality is reached only in 
the infinite volume limit, the random walk has a criticality in any finite cell, by taking the 
limit N + 00. This has a consequence, as seen in table 1, that the value of the exponent 
U already overshoots the exact value at a very small cell size. This would also be the 
case with the FG truncation recipe if the size of the cell were pushed to a sufficiently large 
value (although the behaviour of such an approximation scheme for very large cell size is 
not known and may be complicated, see [ 171). 

It is also possible to do the exact calculation of the corner rule renormalization for 
aii cell sizes in one dimension. Let us first consider a one-dimensional lattice where 
x = 0, 1.2, . . . , L and the sites .x = -1, L + 1 have an infinitely repulsive barrier. (The 
lattice constant a is set equal to 1 for simplicity.) The analogue of (2.4) for the correlation 
function for x > 1 is 

(2.8) Go.x(k) = klGo.x-l(k) + G~.x+l(k) l  

Go.o(k) =kGo.i(k)  + 1 (2.9) 

along with the boundary conditions 
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Flgurr 1. Compadson between the exact and approximate CL@) xi(k,  l / L )  in the cases 
L = 1.2,3. The three full lines correspond to the exact evaluations, while the two broken 
lines are the approximate results as discussed in the text. The intersections of the full lines 
correspond to the exact fixed pins k .  = 0.3157,0.2950, while the intersections of the broken 
lines corespond to the Family-Gould fixed pints k k  = 0.3470, 0.3108 for a scaling from 
L = 2.3 to L' = 1.2 respectively. 

Table 1. Behaviour of v as functions of the cell size b = Lfo, where a is the lwice constant. 
The first two columns refer to the present work, while the second two refer to the results using 
the approxime recipe of Family and Gould 161. 

Scaling lengths bib' k' " kZ; FG 

0.3156 0.5438 0.3470 0.5853 

0.2950 0.5132 0.3108 0.5571 

0.2770 0,4441 0.2920 05129 

0.2825 0.4937 0.2926 0.5412 

0.2711 0.4485 0.2743 0.4868 

0.2745 0.4792 0.2838 0.5398 

0.2640 0.4351 0.2693 0.5148 

and 

Go.L(k) = kGo.L-i(k) 
where we have assumed that all walks start from x = 0. 

We can put this equation in a transfer matrix form, 

'Px(k) = T*,+i(k) x = 1,2,. . . , L - I 
where we defined 

(2.10) 

(2.1 1) 

(2.12) 
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The eigenvalues of the matrix T are clearly 

l*VGTP 
2k 

A& = 

2281 

(2.13) 

which are real if 0 < k < f and form a complex conjugate pair if 4 c k < 1 (we consider 
k e 1 in order to make the generating functions sensible). From these and the boundary 
conditions, we find 

(2.14) 

Note that, although this solution is valid for arbitrarily large L, the boundary condition 
(2.10) makes the system strictlyfnite. 

This expression for Gn,L(k) gives the recursion relation 

Xi(k', 1IL') = ~ i ( k ,  1IL) .  (2.15) 
Using (2.14) and (2.15) for renormalization from a cel1 of size L + 1 to that of size L,  we 
get an implicit solution for the fixed point k*(L + 1, L), 

(2.16) 

where 1% is 1+ evaluated at k = kt. 

asymptotically lacge L: 
After some algebra, we can obtain an explicit solution for the fixed point for 

(2.17) 

The exact critical value kc is obtained from k i  in the L --f CO limit, as expected. However, 
linearizing the recursion relation (2.15) around the fixed point, we get the eigenvalue 

and thus 
1 

= 0.2238.. . . M ( L  + 1)PI - v = lim - 
L-m In A, 2 + z2/4 

(2.18) 

(2.19) 

(2.20) 

Thus the exponent U does not have the correct limiting value (which is f), but rather badly 
overshoots 4 in the same way as in the numerical evaluation in two dimensions. 

One might argue that the incorrect L + CO trend of the eigenvalue A L  may be due 
to the fact that the above cell RG procedure uses a sbictly finite system size L (however 
large it may be) due to the infinitely repulsive boundary condition at both ends of the 
onedimensional cell. However, we can see that thii is not the case by renormalizing a 
one-dimensional generating function with a semi-infinite boundary condition, i.e. with an 
infinitely repulsive boundary only on one side. The exact calculation in this case gives the 
fixed point at k' = 4 exactly independent of L or L', which is consistent with k, = 5, but 
the eigenvalue A ( L ,  L') is 

L +  1 h ( L ,  L') = - 
L'+1'  

(2.21) 
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This is clearly wrong, since it would yield U = 1 + O(l/L). As it turns out, G o , ~ ( k )  is 
singular at k = 4, and what we are attempting to do is to linearize around a singular fixed 
point. 

Even though the real-space renormalization approach described above results in a non- 
sensical exponent value, the result for the two-point correlation function Go,r(k) itself 
is correct. Indeed it is easy to check that it reproduces the exact results for the critical 
exponents v and y1 (a surface exponent [16]) if they are calculated directly from the 
correlation function rather than from the recursion relation based on it. More specifically 
one finds in the grand-canonical ensemble, 

A Ciacometti and H Nakmishi 

m k + i -  
xl(k) = C G o , ~ ( k )  - (1 - 2k)-”’ (2.22) 

L=O 
which is the exact result for the surface exponent yl = f (see next section) and 

(2.23) 

which again gives the exact result U = 1. 
3. Finite-size scaling and surface critical behaviour 

We learned from the previous calculations that, in the usual form, the general cell 
renormalization procedure for the random walk used in [6-81 cannot be consistent. That is, 
it is not assured that, as the size of the cell increases, the results for the critical exponents 
improve and become exact in the limit of an infinite cell. This is built in to the general 
method itself and not specific to any particular truncation procedure used in getting an 
explicit recursion relation. If an improvement is attempted by using exact correlation 
functions, an inconsistency is found stemming from the basic recursion relation. 

The clue of how to remedy the situation comes from the result (2.17) where we calculated 
how the fixed point was becoming exact in the L + CO limit. This is indeed compatible 
with the finite-size scaling hypothesis (see e.g. [16] and references therein), 

kc(L) = ~ ( c o )  + A  (3”’ - (3.1) 

where k C ( w )  = in this 
case. The idea, therefore, is that one can estimate k&) by looking at the divergences of 
the (bulk) susceptibility defined as 

is the exact critical fugacity in the infinitelattice limit and U = 

where C(r0, N; A) is the number of N-step walks starting from a point zo and entirely 
contained in the volume A and Czo.z(k) is its generating function. The subscript B refers 
to bulk in the sense that the end-points xo and x can be anywhere in volume A. Then, 
either by fixing the exact value of U = 4 one can calculate k,(oo) or by fixing the exact 
value of k E ( w )  one can calculate the value of the exponent U. 

The results for the square lattice are shown in figures 2 and 3, and they are consistent 
with the expected values. Indeed a best fit for both cases gives k c ( w )  = 0.25 f 0.01 and 



0.30 I I I I 

0.29 - 
0.28 - 

- 
- 

-_-* 
,.-* 

0.27 - __.-. 
0.26 - */- - 

- 
*.v- 

P. - 
_I - 0.25 - 
xu 

0.24 - 
0.23 - 
0.22 - 
0.21 - 
0.20~  

- 
- 
- 
- 

I I I I 

7.00 I I I I I 

In L 

Figure 3. Finite-size scaling result for the exponent v.  A best fit over all points gives 
l / w  = 0.02. while the exact value is I / v  = 2. 

I lv  = 1.94 f 0.02 and in the case of v improves if we include more and more terms 
corresponding to larger cell sizes. 

The presence of the surface also changes the entropic critical exponents, as is well 
known [16]. Indeed, if the system is sufficiently large to make the distinction between 
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surface and bulk sensible, one can decompose the total free energy FL as 

A Giacometti and H Nakanishi 

where h and hl are the external fields associated with the bulk and the surface, respectively, 
and Ak = k - k,. By differentiating twice with respect to the proper external field and by 
using the finite-size scaling ansatz, one gets the well known general results 

f B ( L )  L 2 l  L Y J U  21(L) L E  L " Y  i,,I(L) L2' p . 1 u  (3.4) 
at the critical values Ak = 0, h = h' = 0. Here we have defined the local susceptibilities: 

where we mean by aA the boundaries of the volume A. 
Thus, our new method forgoes the usual corner rule renormalization per se, and instead, 

calculates various quantities associated with a finite cell and interprets them in terms of 
surfoce finite-size scaling. From figure 4 one can see that this method reproduces very 
accurately the expected values predicted, for example, by the mean-field theory [16, 211, 
namely y / u  = 2, y ~ / u  = 1 and MJ/U = -1. 

As an example of the method just described, we present the finite-size scaling solution 
of the problem of the interplay between the bulk A and the surface ah. In this problem, 
each step of the random walk acquires fugacity k if it is anywhere except on the boundary 
line, and fugacity kl if it lies on the boundary l ie ,  and we perform the exact calculation 
of the finite cell susceptibilities. The random walk with a reflecting or absorbing boundary 
is of course a classic exactly solvable problem [22]; there also exist exact treatments of the 
problem of the effects of the attractive boundary where the degree of atWaction is varied 

5.00 

4.00 - 
J 

ZC 3.00 
v 

c - 
2.00 

1 .oo 

0.00 
0.00 0.50 1.00 1.50 2.00 2.50 3.00 

In L 
Fignre 4. Evaluation of the bulk and surfam susceptibilities in the finite-sire scaling approach. 
The estimates for XB (0). XI (A) and X I J  (+) are obtained fmm the slopes of the lines shown 
in the log-log plots. The exact values accardmg to the mean-field calculation are y / v  = 2, 
yi/u = 1 and yi. i /v = -1. 
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Figure 5. Computed phase diagram for the surfact-buk problem. The pints shown have been 
calculated for different system sizes. L = 4 (O), L = 10 (A), and L = 20 (0). The dotted and 
broken lines comespond to slopes k l / k  = 1.2, respectively. me special p int  is estimated to 
be at k = 0.25 * 0.01, kl = 0.35 f 0.01. 

(e.g. [231). The latter is, however, not a trivial problem and the exact treatments tend to be 
rather involved. The present approach is much simpler and yet yields accurate results and 
serves to illustrate the power of the method. 

Physically the possibility of changing the strength of the surface fugacity with respect to 
the bulk fugacity allows the surface to make up for the missing bonds. Clearly one expects 
that if kl is sufficiently strong almost all walks lie on the surface, and then the critical point 
and the universality class should both change: when all the interactions in the bulk are 
zero, the walks are not allowed to stay in the bulk and we have the adsorbed phase. Since 
kl = f and k = are the exact critical values corresponding to an infinite suface (a line 
in this case) and an infinite bulk, one then expects a qualitative phase diagram, as shown 
in figure 5. 

For this calculation we-eliminated the corner and imposed a periodic boundary condition 
into the vertical direction 2, while the horizontal direction i is of size L and has free edges. 
The result is shown in figure 6. It appears that there is a tricritical point (called a special 
point) which is the intersection of three different lines (corresponding to three different 
second-order phase transitions). Below the special point there is the ordinary transition, 
where the bulk and the surface undergo a transition at the same critical point. Above the 
special point there is a line of suface transitions, which take place if kl is bigger then the 
special point ordinate, where the surface goes into an ordered state (where the susceptibility 
is singular) while the bulk is still disordered, as well as another line called the extraordinary 
line where the buIk also becomes ordered. 

Our estimate of the special point SP is at k = 0.25 * 0.01, and kl = 0.35 f 0.01, 
Corresponding to a ratio k l / k  = 1.40 f 0.06. This is in reasonably good agreement with a 
simple mean-field argument which would predict the ratio of i. The errors were estimated 
graphically. 
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Figure 6. A sketch of the expected phase diagram. The lines shown correspond 
to the ordinary transition (0). the surface transition (S) and the extraordinary 
transition (K), and the point labelled SP is the triaitical point called lhe special 
Msition. 

The qualitative features contained in this phase diagram also appear in the case of the 
self-avoiding walks [241 and in percolation [25]. Quite similar features are found in the 
case of a defect (which is a (d - 1)-dimensional surface inserted into a d-dimensional bulk) 
as well. In this case, the special point SP is found when k l / k  = 1, again consistent with 
mean-field arguments. 

A second and perhaps more interesting example is the case where the random walk is 
constrained to a randomly diluted square lattice. We first applied our variant of the real- 
space cell renormalization to the diluted case. In this case, we enumerate al l  configurations 
of the cell with respective probabilities of occurrence at the critical dilution (i.e. when each 
bond is present with a probability of about p = 0.5), and on each configuration. For 
the ideal chain case we found, from a numerical Taylor expansion up to the proper order, 
U = 0.606 and U = 0.516 for L = 2.3 and L' = 1,2, respectively, in very good agreements 
with the values presented in [7]. The exact calculations, however, give values which get 
worse and worse as the cell size increases, as expected. For the myopic ant we found 
similar consistency with the results of [8], given that they treated site percolation and used 
a different truncation procedure. 

We then extended the analysis of the surface-phase phase diagram to the disordered 
L = 2 cell only, and leave a more comprehensive study of this problem to a subsequent 
work. We calculated the surface and bulk susceptibilities exactly in the same way as 
described above. The locations of the singularities in the ensemble-averaged susceptibilities 
then determine the L = 2 approximations to the phase boundary. 

The results for the myopic ant rule are given in figure 7. One notes immediately 
an unusual feature where two separate boundaries are traced from the bulk and surface 
susceptibilities, although they appear to merge for small values of k .  In particular, it 
appears at this level that the bulk susceptibility may have a singularity before the surface 
susceptibility becomes singular. Of course this does not mean that the true bulk ordering 
occurs before surface ordering because there is a substantial surface contribution even in 
the bulk susceptibility as we have calculated it. This may simply be a spurious effect of 
the small cell size. Nevertheless, this might also suggest a qualitatively different situation, 
as such discrepancies did not arise in the non-diluted case even for very small cell sizes. It 
may be noted that the susceptibility singularity for an ideal chain is not expected to be a 
simple power law in strongly correlated disorder but rather an essential singularity [12-E]. 
More work is clearly needed to elucidate this situation, which is beyond scope of this paper. 

4. Conclusions 

In this paper we have given an analysis, both in the undiluted and diluted case, of the 
difficulties associated with the usual cell renormalization approach to the random-walk 
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F i p  7. Computed phase diagram for the swface-bulk problem for the random walk on a 2 x 2 
cell for the diluted case for bond (p = 0.5). The d e  chosen was the myopic ant described in 
the text With periodic boundary conditions in the 5 direction (parallel to the surface), and open 
boundary conditions in the 1 direction, where only those walks which span were averaged. The 
symbols (A),and (0) correspond to the bulk and surface singularities as explained in the text. 

problem (with or without the Family-Gould truncation procedure [6]), and presented an 
alternative method to calculate the critical properties which does not suffer from similar 
difficulties. This new approach is shown to give results which continually improve as the 
size of the cell increases, unlike in the previous approaches which are shown here not to 
have this essential feature. Our approach is based only on the finite-size scaling hypothesis. 
We have demonstrated this approach by first calculating the full phase diagram of the effect 
of the surface fugacity having a different value from the bulk fugacity, and calculating 
the exponents y,, y1.1 and U. Secondly, we have also presented an initial calculation of 
the corresponding phase diagram for the random walk constrained to a randomly diluted 
substrate. Although this problem is potentially important as it has the essential features of 
transport through disordered media (an important materials problem), reliable investigations 
are lacking when the disorder is strongly correlated. 
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